Papers
Topics
Authors
Recent
2000 character limit reached

Keynote: Small Neural Nets Are Beautiful: Enabling Embedded Systems with Small Deep-Neural-Network Architectures (1710.02759v1)

Published 7 Oct 2017 in cs.CV

Abstract: Over the last five years Deep Neural Nets have offered more accurate solutions to many problems in speech recognition, and computer vision, and these solutions have surpassed a threshold of acceptability for many applications. As a result, Deep Neural Networks have supplanted other approaches to solving problems in these areas, and enabled many new applications. While the design of Deep Neural Nets is still something of an art form, in our work we have found basic principles of design space exploration used to develop embedded microprocessor architectures to be highly applicable to the design of Deep Neural Net architectures. In particular, we have used these design principles to create a novel Deep Neural Net called SqueezeNet that requires as little as 480KB of storage for its model parameters. We have further integrated all these experiences to develop something of a playbook for creating small Deep Neural Nets for embedded systems.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.