Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sparse Portfolio Selection via the sorted $\ell_{1}$-Norm

Published 6 Oct 2017 in q-fin.PM | (1710.02435v1)

Abstract: We introduce a financial portfolio optimization framework that allows us to automatically select the relevant assets and estimate their weights by relying on a sorted $\ell_1$-Norm penalization, henceforth SLOPE. Our approach is able to group constituents with similar correlation properties, and with the same underlying risk factor exposures. We show that by varying the intensity of the penalty, SLOPE can span the entire set of optimal portfolios on the risk-diversification frontier, from minimum variance to the equally weighted. To solve the optimization problem, we develop a new efficient algorithm, based on the Alternating Direction Method of Multipliers. Our empirical analysis shows that SLOPE yields optimal portfolios with good out-of-sample risk and return performance properties, by reducing the overall turnover through more stable asset weight estimates. Moreover, using the automatic grouping property of SLOPE, new portfolio strategies, such as SLOPE-MV, can be developed to exploit the data-driven detected similarities across assets.

Citations (49)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.