Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

$p$-adic families of automorphic forms in the $μ$-ordinary setting (1710.01864v3)

Published 5 Oct 2017 in math.NT

Abstract: We develop a theory of $p$-adic automorphic forms on unitary groups that allows $p$-adic interpolation in families and holds for all primes $p$ that do not ramify in the reflex field $E$ of the associated unitary Shimura variety. If the ordinary locus is nonempty (a condition only met if $p$ splits completely in $E$), we recover Hida's theory of $p$-adic automorphic forms, which is defined over the ordinary locus. More generally, we work over the $\mu$-ordinary locus, which is open and dense. By eliminating the splitting condition on $p$, our framework should allow many results employing Hida's theory to extend to infinitely many more primes. We also provide a construction of $p$-adic families of automorphic forms that uses differential operators constructed in the paper. Our approach is to adapt the methods of Hida and Katz to the more general $\mu$-ordinary setting, while also building on papers of each author. Along the way, we encounter some unexpected challenges and subtleties that do not arise in the ordinary setting.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.