Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off (1710.01098v4)
Abstract: In this paper, we investigate the problems of Cauchy theory and exponential stability for the inhomogeneous Boltzmann equation without angular cut-off. We only deal with the physical case of hard potentials type interactions (with a moderate angular singularity). We prove a result of existence and uniqueness of solutions in a close-to-equilibrium regime for this equation in weighted Sobolev spaces with a polynomial weight, contrary to previous works on the subject, all developed with a weight prescribed by the equilibrium. It is the first result in this more physically relevant frameworkfor this equation. Moreover, we prove an exponential stability for such a solution, with a rate as close as we want to the optimal rate given by the semigroup decay of the linearized equation. Let us highlight the fact that a key point of the development of our Cauchy theory is the proof of new regularization estimates in short time for the linearized operator thanks to pseudo-differential tools.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.