Papers
Topics
Authors
Recent
2000 character limit reached

A Short Note on the Frame Set of Odd Functions (1710.00753v3)

Published 2 Oct 2017 in math.FA, math-ph, and math.MP

Abstract: In this work we derive a simple argument which shows that Gabor systems consisting of odd functions of $d$ variables and symplectic lattices of density $2d$ cannot constitute a Gabor frame. In the 1--dimensional, separable case, this is a special case of a result proved by Lyubarskii and Nes, however, we use a different approach in this work exploiting the algebraic relation between the ambiguity function and the Wigner distribution as well as their relation given by the (symplectic) Fourier transform. Also, we do not need the assumption that the lattice is separable and, hence, new restrictions are added to the full frame set of odd functions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.