A Short Note on the Frame Set of Odd Functions (1710.00753v3)
Abstract: In this work we derive a simple argument which shows that Gabor systems consisting of odd functions of $d$ variables and symplectic lattices of density $2d$ cannot constitute a Gabor frame. In the 1--dimensional, separable case, this is a special case of a result proved by Lyubarskii and Nes, however, we use a different approach in this work exploiting the algebraic relation between the ambiguity function and the Wigner distribution as well as their relation given by the (symplectic) Fourier transform. Also, we do not need the assumption that the lattice is separable and, hence, new restrictions are added to the full frame set of odd functions.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.