Papers
Topics
Authors
Recent
2000 character limit reached

Hecke modules for arithmetic groups via bivariant K-theory

Published 1 Oct 2017 in math.KT, math.NT, and math.OA | (1710.00331v2)

Abstract: Let $\Gamma$ be a lattice in a locally compact group $G$. In earlier work, we used $KK$-theory to equip the $K$-groups of any $\Gamma$-$C{*}$-algebra on which the commensurator of $\Gamma$ acts with Hecke operators. When $\Gamma$ is arithmetic, this gives Hecke operators on the $K$-theory of certain $C{*}$-algebras that are naturally associated with $\Gamma$. In this paper, we first study the topological $K$-theory of the arithmetic manifold associated to $\Gamma$. We prove that the Chern character commutes with Hecke operators. Afterwards, we show that the Shimura product of double cosets naturally corresponds to the Kasparov product and thus that the $KK$-groups associated to an arithmetic group $\Gamma$ become true Hecke modules. We conclude by discussing Hecke equivariant maps in $KK$-theory in great generality and apply this to the Borel-Serre compactification as well as various noncommutative compactifications associated with $\Gamma$. Along the way we discuss the relation between the $K$-theory and the integral cohomology of low-dimensional manifolds as Hecke modules.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.