Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Domination game on uniform hypergraphs (1710.00298v1)

Published 1 Oct 2017 in math.CO

Abstract: In this paper we introduce and study the domination game on hypergraphs. This is played on a hypergraph $\mathcal{H}$ by two players, namely Dominator and Staller, who alternately select vertices such that each selected vertex enlarges the set of vertices dominated so far. The game is over if all vertices of $\mathcal{H}$ are dominated. Dominator aims to finish the game as soon as possible, while Staller aims to delay the end of the game. If each player plays optimally and Dominator starts, the length of the game is the invariant `game domination number' denoted by $\gamma_g(\mathcal{H})$. This definition is the generalization of the domination game played on graphs and it is a special case of the transversal game on hypergraphs. After some basic general results, we establish an asymptotically tight upper bound on the game domination number of $k$-uniform hypergraphs. In the remaining part of the paper we prove that $\gamma_g(\mathcal{H}) \le 5n/9$ if $\mathcal{H}$ is a 3-uniform hypergraph of order $n$ and does not contain isolated vertices. This also implies the following new result for graphs: If $G$ is an isolate-free graph on $n$ vertices and each of its edges is contained in a triangle, then $\gamma_g(G) \le 5n/9$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.