Papers
Topics
Authors
Recent
2000 character limit reached

FoodNet: Recognizing Foods Using Ensemble of Deep Networks

Published 27 Sep 2017 in cs.CV | (1709.09429v1)

Abstract: In this work we propose a methodology for an automatic food classification system which recognizes the contents of the meal from the images of the food. We developed a multi-layered deep convolutional neural network (CNN) architecture that takes advantages of the features from other deep networks and improves the efficiency. Numerous classical handcrafted features and approaches are explored, among which CNNs are chosen as the best performing features. Networks are trained and fine-tuned using preprocessed images and the filter outputs are fused to achieve higher accuracy. Experimental results on the largest real-world food recognition database ETH Food-101 and newly contributed Indian food image database demonstrate the effectiveness of the proposed methodology as compared to many other benchmark deep learned CNN frameworks.

Citations (92)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.