Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ontological Physics-based Motion Planning for Manipulation (1709.09271v2)

Published 26 Sep 2017 in cs.RO

Abstract: Robotic manipulation involves actions where contacts occur between the robot and the objects. In this scope, the availability of physics-based engines allows motion planners to comprise dynamics between rigid bodies, which is necessary for planning this type of actions. However, physics-based motion planning is computationally intensive due to the high dimensionality of the state space and the need to work with a low integration step to find accurate solutions. On the other hand, manipulation actions change the environment and conditions further actions and motions. To cope with this issue, the representation of manipulation actions using ontologies enables a semantic-based inference process that alleviates the computational cost of motion planning. This paper proposes a manipulation planning framework where physics-based motion planning is enhanced with ontological knowledge representation and reasoning. The proposal has been implemented and is illustrated and validated with a simple example. Its use in grasping tasks in cluttered environments is currently under development.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. M Muhayyuddin (1 paper)
  2. Aliakbar Akbari (4 papers)
  3. Jan Rosell (6 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.