Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emotion-Recognition Using Smart Watch Accelerometer Data: Preliminary Findings (1709.09148v1)

Published 26 Sep 2017 in cs.HC

Abstract: This study investigates the use of accelerometer data from a smart watch to infer an individual's emotional state. We present our preliminary findings on a user study with 50 participants. Participants were primed either with audio-visual (movie clips) or audio (classical music) to elicit emotional responses. Participants then walked while wearing a smart watch on one wrist and a heart rate strap on their chest. Our hypothesis is that the accelerometer signal will exhibit different patterns for participants in response to different emotion priming. We divided the accelerometer data using sliding windows, extracted features from each window, and used the features to train supervised machine learning algorithms to infer an individual's emotion from their walking pattern. Our discussion includes a description of the methodology, data collected, and early results.

Citations (30)

Summary

We haven't generated a summary for this paper yet.