Papers
Topics
Authors
Recent
Search
2000 character limit reached

Tensor network subspace identification of polynomial state space models

Published 26 Sep 2017 in cs.SY | (1709.08773v1)

Abstract: This article introduces a tensor network subspace algorithm for the identification of specific polynomial state space models. The polynomial nonlinearity in the state space model is completely written in terms of a tensor network, thus avoiding the curse of dimensionality. We also prove how the block Hankel data matrices in the subspace method can be exactly represented by low rank tensor networks, reducing the computational and storage complexity significantly. The performance and accuracy of our subspace identification algorithm are illustrated by numerical experiments, showing that our tensor network implementation is around 20 times faster than the standard matrix implementation before the latter fails due to insufficient memory, is robust with respect to noise and can model real-world systems.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.