Symmetric chain complexes, twisted Blanchfield pairings, and knot concordance (1709.08560v3)
Abstract: We give a formula for the duality structure of the 3-manifold obtained by doing zero-framed surgery along a knot in the 3-sphere, starting from a diagram of the knot. We then use this to give a combinatorial algorithm for computing the twisted Blanchfield pairing of such 3-manifolds. With the twisting defined by Casson-Gordon style representations, we use our computation of the twisted Blanchfield pairing to show that some subtle satellites of genus two ribbon knots yield non-slice knots. The construction is subtle in the sense that, once based, the infection curve lies in the second derived subgroup of the knot group, and that we identify these infection curves explicitly.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.