Papers
Topics
Authors
Recent
Search
2000 character limit reached

Automatic Detection of Malware-Generated Domains with Recurrent Neural Models

Published 20 Sep 2017 in cs.CR | (1709.07102v1)

Abstract: Modern malware families often rely on domain-generation algorithms (DGAs) to determine rendezvous points to their command-and-control server. Traditional defence strategies (such as blacklisting domains or IP addresses) are inadequate against such techniques due to the large and continuously changing list of domains produced by these algorithms. This paper demonstrates that a machine learning approach based on recurrent neural networks is able to detect domain names generated by DGAs with high precision. The neural models are estimated on a large training set of domains generated by various malwares. Experimental results show that this data-driven approach can detect malware-generated domain names with a F_1 score of 0.971. To put it differently, the model can automatically detect 93 % of malware-generated domain names for a false positive rate of 1:100.

Citations (65)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.