Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Study of Piecewise Linear-Quadratic Programs

Published 18 Sep 2017 in math.OC | (1709.05758v2)

Abstract: Motivated by a growing list of nontraditional statistical estimation problems of the piecewise kind, this paper provides a survey of known results supplemented with new results for the class of piecewise linear-quadratic programs. These are linearly constrained optimization problems with piecewise linear-quadratic (PLQ) objective functions. Starting from a study of the representation of such a function in terms of a family of elementary functions consisting of squared affine functions, squared plus-composite-affine functions, and affine functions themselves, we summarize some local properties of a PLQ function in terms of their first and second-order directional derivatives. We extend some well-known necessary and sufficient second-order conditions for local optimality of a quadratic program to a PLQ program and provide a dozen such equivalent conditions for strong, strict, and isolated local optimality, showing in particular that a PLQ program has the same characterizations for local minimality as a standard quadratic program. As a consequence of one such condition, we show that the number of strong, strict, or isolated local minima of a PLQ program is finite; this result supplements a recent result about the finite number of directional stationary objective values. Interestingly, these finiteness results can be uncovered by invoking a very powerful property of subanalytic functions; our proof is fairly elementary, however. We discuss applications of PLQ programs in some modern statistical estimation problems. These problems lead to a special class of unconstrained composite programs involving the non-differentiable $\ell_1$-function, for which we show that the task of verifying the second-order stationary condition can be converted to the problem of checking the copositivity of certain Schur complement on the nonnegative orthant.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.