Papers
Topics
Authors
Recent
Search
2000 character limit reached

Gaussian Process Latent Force Models for Learning and Stochastic Control of Physical Systems

Published 15 Sep 2017 in cs.SY, math.DS, stat.ME, and stat.ML | (1709.05409v2)

Abstract: This article is concerned with learning and stochastic control in physical systems which contain unknown input signals. These unknown signals are modeled as Gaussian processes (GP) with certain parametrized covariance structures. The resulting latent force models (LFMs) can be seen as hybrid models that contain a first-principles physical model part and a non-parametric GP model part. We briefly review the statistical inference and learning methods for this kind of models, introduce stochastic control methodology for the models, and provide new theoretical observability and controllability results for them.

Citations (51)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.