Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Device Activity and Embedded Information Bit Detection Using AMP in Massive MIMO (1709.05161v1)

Published 15 Sep 2017 in cs.IT and math.IT

Abstract: Future cellular networks will support a massive number of devices as a result of emerging technologies such as Internet-of-Things and sensor networks. Enhanced by machine type communication (MTC), low-power low-complex devices in the order of billions are projected to receive service from cellular networks. Contrary to traditional networks which are designed to handle human driven traffic, future networks must cope with MTC based systems that exhibit sparse traffic properties, operate with small packets and contain a large number of devices. Such a system requires smarter control signaling schemes for efficient use of system resources. In this work, we consider a grant-free random access cellular network and propose an approach which jointly detects user activity and single information bit per packet. The proposed approach is inspired by the approximate message passing (AMP) and demonstrates a superior performance compared to the original AMP approach. Furthermore, the numerical analysis reveals that the performance of the proposed approach scales with number of devices, which makes it suitable for user detection in cellular networks with massive number of devices.

Citations (33)

Summary

We haven't generated a summary for this paper yet.