Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Food Recognition using Fusion of Classifiers based on CNNs (1709.04864v1)

Published 14 Sep 2017 in cs.CV

Abstract: With the arrival of convolutional neural networks, the complex problem of food recognition has experienced an important improvement in recent years. The best results have been obtained using methods based on very deep convolutional neural networks, which show that the deeper the model,the better the classification accuracy will be obtain. However, very deep neural networks may suffer from the overfitting problem. In this paper, we propose a combination of multiple classifiers based on different convolutional models that complement each other and thus, achieve an improvement in performance. The evaluation of our approach is done on two public datasets: Food-101 as a dataset with a wide variety of fine-grained dishes, and Food-11 as a dataset of high-level food categories, where our approach outperforms the independent CNN models.

Citations (56)

Summary

We haven't generated a summary for this paper yet.