Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the exterior Dirichlet problem for Hessian quotient equations

Published 14 Sep 2017 in math.AP | (1709.04712v1)

Abstract: In this paper, we establish the existence and uniqueness theorem for solutions of the exterior Dirichlet problem for Hessian quotient equations with prescribed asymptotic behavior at infinity. This extends the previous related results on the Monge-Amp`{e}re equations and on the Hessian equations, and rearranges them in a systematic way. Based on the Perron's method, the main ingredient of this paper is to construct some appropriate subsolutions of the Hessian quotient equation, which is realized by introducing some new quantities about the elementary symmetric functions and using them to analyze the corresponding ordinary differential equation related to the generalized radially symmetric subsolutions of the original equation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.