Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Interpreting Shared Deep Learning Models via Explicable Boundary Trees (1709.03730v1)

Published 12 Sep 2017 in cs.LG and cs.HC

Abstract: Despite outperforming the human in many tasks, deep neural network models are also criticized for the lack of transparency and interpretability in decision making. The opaqueness results in uncertainty and low confidence when deploying such a model in model sharing scenarios, when the model is developed by a third party. For a supervised machine learning model, sharing training process including training data provides an effective way to gain trust and to better understand model predictions. However, it is not always possible to share all training data due to privacy and policy constraints. In this paper, we propose a method to disclose a small set of training data that is just sufficient for users to get the insight of a complicated model. The method constructs a boundary tree using selected training data and the tree is able to approximate the complicated model with high fidelity. We show that traversing data points in the tree gives users significantly better understanding of the model and paves the way for trustworthy model sharing.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.