Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-Preserving Collaborative Deep Learning with Unreliable Participants (1812.10113v3)

Published 25 Dec 2018 in cs.CR and cs.LG

Abstract: With powerful parallel computing GPUs and massive user data, neural-network-based deep learning can well exert its strong power in problem modeling and solving, and has archived great success in many applications such as image classification, speech recognition and machine translation etc. While deep learning has been increasingly popular, the problem of privacy leakage becomes more and more urgent. Given the fact that the training data may contain highly sensitive information, e.g., personal medical records, directly sharing them among the users (i.e., participants) or centrally storing them in one single location may pose a considerable threat to user privacy. In this paper, we present a practical privacy-preserving collaborative deep learning system that allows users to cooperatively build a collective deep learning model with data of all participants, without direct data sharing and central data storage. In our system, each participant trains a local model with their own data and only shares model parameters with the others. To further avoid potential privacy leakage from sharing model parameters, we use functional mechanism to perturb the objective function of the neural network in the training process to achieve $\epsilon$-differential privacy. In particular, for the first time, we consider the existence of~\textit{unreliable participants}, i.e., the participants with low-quality data, and propose a solution to reduce the impact of these participants while protecting their privacy. We evaluate the performance of our system on two well-known real-world datasets for regression and classification tasks. The results demonstrate that the proposed system is robust against unreliable participants, and achieves high accuracy close to the model trained in a traditional centralized manner while ensuring rigorous privacy protection.

Citations (9)

Summary

We haven't generated a summary for this paper yet.