Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient generation of series expansions for $\pm J$ Ising spin-glasses in a classical or a quantum (transverse) field (1709.03609v1)

Published 11 Sep 2017 in cond-mat.dis-nn

Abstract: We discuss generation of series expansions for Ising spin-glasses with a symmetric $\pm J$ (i.e. bimodal) distribution on d-dimensional hypercubic lattices using linked-cluster methods. Simplifications for the bimodal distribution allow us to go to higher order than for a general distribution. We discuss two types of problem, one classical and one quantum. The classical problem is that of the Ising spin glass in a longitudinal magnetic field, $h$, for which we obtain high temperature series expansions in variables $\tanh(J/T)$ and $\tanh(h/T)$. The quantum problem is a $T=0$ study of the Ising spin glass in a transverse magnetic field $h_T$ for which we obtain a perturbation theory in powers of $J/h_T$. These methods require (i) enumeration and counting of \textit{all} connected clusters that can be embedded in the lattice up to some order $n$, and (ii) an evaluation of the contribution of each cluster for the quantity being calculated, known as the weight. We discuss a general method that takes the much smaller list (and count) of all no free-end (NFE) clusters on a lattice up to some order $n$, and automatically generates all other clusters and their counts up to the same order. The weights for finite clusters in both cases have a simple graphical interpretation that allows us to proceed efficiently for a general configuration of the $\pm J$ bonds, and at the end perform suitable disorder averaging. The order of our computations is limited by the weight calculations for the high-temperature expansions of the classical model, while they are limited by graph counting for the $T=0$ quantum system. Details of the calculational methods are presented.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.