Papers
Topics
Authors
Recent
Search
2000 character limit reached

Anomaly Detection in Hierarchical Data Streams under Unknown Models

Published 11 Sep 2017 in cs.LG | (1709.03573v1)

Abstract: We consider the problem of detecting a few targets among a large number of hierarchical data streams. The data streams are modeled as random processes with unknown and potentially heavy-tailed distributions. The objective is an active inference strategy that determines, sequentially, which data stream to collect samples from in order to minimize the sample complexity under a reliability constraint. We propose an active inference strategy that induces a biased random walk on the tree-structured hierarchy based on confidence bounds of sample statistics. We then establish its order optimality in terms of both the size of the search space (i.e., the number of data streams) and the reliability requirement. The results find applications in hierarchical heavy hitter detection, noisy group testing, and adaptive sampling for active learning, classification, and stochastic root finding.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.