Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Residual Networks and Weight Initialization (1709.02956v1)

Published 9 Sep 2017 in cs.LG and stat.ML

Abstract: Residual Network (ResNet) is the state-of-the-art architecture that realizes successful training of really deep neural network. It is also known that good weight initialization of neural network avoids problem of vanishing/exploding gradients. In this paper, simplified models of ResNets are analyzed. We argue that goodness of ResNet is correlated with the fact that ResNets are relatively insensitive to choice of initial weights. We also demonstrate how batch normalization improves backpropagation of deep ResNets without tuning initial values of weights.

Citations (22)

Summary

We haven't generated a summary for this paper yet.