Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Deep ResNet Blocks Sequentially using Boosting Theory (1706.04964v4)

Published 15 Jun 2017 in cs.LG

Abstract: Deep neural networks are known to be difficult to train due to the instability of back-propagation. A deep \emph{residual network} (ResNet) with identity loops remedies this by stabilizing gradient computations. We prove a boosting theory for the ResNet architecture. We construct $T$ weak module classifiers, each contains two of the $T$ layers, such that the combined strong learner is a ResNet. Therefore, we introduce an alternative Deep ResNet training algorithm, \emph{BoostResNet}, which is particularly suitable in non-differentiable architectures. Our proposed algorithm merely requires a sequential training of $T$ "shallow ResNets" which are inexpensive. We prove that the training error decays exponentially with the depth $T$ if the \emph{weak module classifiers} that we train perform slightly better than some weak baseline. In other words, we propose a weak learning condition and prove a boosting theory for ResNet under the weak learning condition. Our results apply to general multi-class ResNets. A generalization error bound based on margin theory is proved and suggests ResNet's resistant to overfitting under network with $l_1$ norm bounded weights.

Citations (107)

Summary

We haven't generated a summary for this paper yet.