Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IamNN: Iterative and Adaptive Mobile Neural Network for Efficient Image Classification (1804.10123v1)

Published 26 Apr 2018 in cs.CV and cs.NE

Abstract: Deep residual networks (ResNets) made a recent breakthrough in deep learning. The core idea of ResNets is to have shortcut connections between layers that allow the network to be much deeper while still being easy to optimize avoiding vanishing gradients. These shortcut connections have interesting side-effects that make ResNets behave differently from other typical network architectures. In this work we use these properties to design a network based on a ResNet but with parameter sharing and with adaptive computation time. The resulting network is much smaller than the original network and can adapt the computational cost to the complexity of the input image.

Citations (40)

Summary

We haven't generated a summary for this paper yet.