Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepFeat: A Bottom Up and Top Down Saliency Model Based on Deep Features of Convolutional Neural Nets (1709.02495v1)

Published 8 Sep 2017 in cs.CV

Abstract: A deep feature based saliency model (DeepFeat) is developed to leverage the understanding of the prediction of human fixations. Traditional saliency models often predict the human visual attention relying on few level image cues. Although such models predict fixations on a variety of image complexities, their approaches are limited to the incorporated features. In this study, we aim to provide an intuitive interpretation of convolu- tional neural network deep features by combining low and high level visual factors. We exploit four evaluation metrics to evaluate the correspondence between the proposed framework and the ground-truth fixations. The key findings of the results demon- strate that the DeepFeat algorithm, incorporation of bottom up and top down saliency maps, outperforms the individual bottom up and top down approach. Moreover, in comparison to nine 9 state-of-the-art saliency models, our proposed DeepFeat model achieves satisfactory performance based on all four evaluation metrics.

Citations (24)

Summary

We haven't generated a summary for this paper yet.