Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Computing optimal experimental designs with respect to a compound Bayes risk criterion (1709.02317v1)

Published 7 Sep 2017 in stat.CO

Abstract: We consider the problem of computing optimal experimental design on a finite design space with respect to a compound Bayes risk criterion, which includes the linear criterion for prediction in a random coefficient regression model. We show that the problem can be restated as constrained A-optimality in an artificial model. This permits using recently developed computational tools, for instance the algorithms based on the second-order cone programming for optimal approximate design, and mixed-integer second-order cone programming for optimal exact designs. We demonstrate the use of the proposed method for the problem of computing optimal designs of a random coefficient regression model with respect to an integrated mean squared error criterion.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.