Papers
Topics
Authors
Recent
2000 character limit reached

Size scaling of failure strength with fat-tailed disorder in a fiber bundle model

Published 6 Sep 2017 in cond-mat.dis-nn and cond-mat.mtrl-sci | (1709.02011v1)

Abstract: We investigate the size scaling of the macroscopic fracture strength of heterogeneous materials when microscopic disorder is controlled by fat-tailed distributions. We consider a fiber bundle model where the strength of single fibers is described by a power law distribution over a finite range. Tuning the amount of disorder by varying the power law exponent and the upper cutoff of fibers' strength, in the limit of equal load sharing an astonishing size effect is revealed: For small system sizes the bundle strength increases with the number of fibers and the usual decreasing size effect of heterogeneous materials is only restored beyond a characteristic size. We show analytically that the extreme order statistics of fibers' strength is responsible for this peculiar behavior. Analyzing the results of computer simulations we deduce a scaling form which describes the dependence of the macroscopic strength of fiber bundles on the parameters of microscopic disorder over the entire range of system sizes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.