Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Lagrangian branched transport model and the equivalence with its Eulerian formulation

Published 5 Sep 2017 in math.OC and math.CA | (1709.01414v1)

Abstract: First we present two classical models of Branched Transport: the Lagrangian model introduced by Bernot, Caselles, Morel, Maddalena, Solimini, and the Eulerian model introduced by Xia. An emphasis is put on the Lagrangian model, for which we give a complete proof of existence of minimizers in a --hopefully-- simplified manner. We also treat in detail some $\sigma$-finiteness and rectifiability issues to yield rigorously the energy formula connecting the irrigation cost I$\alpha$ to the Gilbert Energy E$\alpha$. Our main purpose is to use this energy formula and exploit a Smirnov decomposition of vector flows, which was proved via the Dacorogna-Moser approach by Santambrogio, to establish the equivalence between the Lagrangian and Eulerian models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.