Papers
Topics
Authors
Recent
2000 character limit reached

Semantic Document Distance Measures and Unsupervised Document Revision Detection

Published 5 Sep 2017 in cs.IR and cs.CL | (1709.01256v2)

Abstract: In this paper, we model the document revision detection problem as a minimum cost branching problem that relies on computing document distances. Furthermore, we propose two new document distance measures, word vector-based Dynamic Time Warping (wDTW) and word vector-based Tree Edit Distance (wTED). Our revision detection system is designed for a large scale corpus and implemented in Apache Spark. We demonstrate that our system can more precisely detect revisions than state-of-the-art methods by utilizing the Wikipedia revision dumps https://snap.stanford.edu/data/wiki-meta.html and simulated data sets.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.