Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bayesian approach to Spatio-temporally Consistent Simulation of Daily Monsoon Rainfall over India (1709.00399v1)

Published 1 Sep 2017 in stat.AP

Abstract: Simulation of rainfall over a region for long time-sequences can be very useful for planning and policy-making, especially in India where the economy is heavily reliant on monsoon rainfall. However, such simulations should be able to preserve the known spatial and temporal characteristics of rainfall over India. General Circulation Models (GCMs) are unable to do so, and various rainfall generators designed by hydrologists using stochastic processes like Gaussian Processes are also difficult to apply over the vast and highly diverse landscape of India. In this paper, we explore a series of Bayesian models based on conditional distributions of latent variables that describe weather conditions at specific locations and over the whole country. During parameter estimation from observed data, we use spatio-temporal smoothing using Markov Random Field so that the parameters learnt are spatially and temporally coherent. Also, we use a nonparametric spatial clustering based on Chinese Restaurant Process to identify homogeneous regions, which are utilized by some of the proposed models to improve spatial correlations of the simulated rainfall. The models are able to simulate daily rainfall across India for years, and can also utilize contextual information for conditional simulation. We use two datasets of different spatial resolutions over India, and focus on the period 2000-2015. We propose a large number of metrics to study the spatio-temporal properties of the simulations by the models, and compare them with the observed data to evaluate the strengths and weaknesses of the models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.