Papers
Topics
Authors
Recent
2000 character limit reached

A Gravitational Theory of the Quantum

Published 30 Aug 2017 in physics.gen-ph, gr-qc, and quant-ph | (1709.00329v1)

Abstract: The synthesis of quantum and gravitational physics is sought through a finite, realistic, locally causal theory where gravity plays a vital role not only during decoherent measurement but also during non-decoherent unitary evolution. Invariant set theory is built on geometric properties of a compact fractal-like subset $I_U$ of cosmological state space on which the universe is assumed to evolve and from which the laws of physics are assumed to derive. Consistent with the primacy of $I_U$, a non-Euclidean (and hence non-classical) state-space metric $g_p$ is defined, related to the $p$-adic metric of number theory where $p$ is a large but finite Pythagorean prime. Uncertain states on $I_U$ are described using complex Hilbert states, but only if their squared amplitudes are rational and corresponding complex phase angles are rational multiples of $2 \pi$. Such Hilbert states are necessarily $g_p$-distant from states with either irrational squared amplitudes or irrational phase angles. The gappy fractal nature of $I_U$ accounts for quantum complementarity and is characterised numerically by a generic number-theoretic incommensurateness between rational angles and rational cosines of angles. The Bell inequality, whose violation would be inconsistent with local realism, is shown to be $g_p$-distant from all forms of the inequality that are violated in any finite-precision experiment. The delayed-choice paradox is resolved through the computational irreducibility of $I_U$. The Schr\"odinger and Dirac equations describe evolution on $I_U$ in the singular limit at $p=\infty$. By contrast, an extension of the Einstein field equations on $I_U$ is proposed which reduces smoothly to general relativity as $p \rightarrow \infty$. Novel proposals for the dark universe and the elimination of classical space-time singularities are given and experimental implications outlined.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.