On the Calogero-Moser space associated with dihedral groups (1708.09728v1)
Abstract: Using the geometry of the associated Calogero-Moser space, R. Rouquier and the author have attached to any finite complex reflection group $W$ several notions (Calogero-Moser left, right or two-sided cells, Calogero-Moser cellular characters), completing the notion of Calogero-Moser families defined by Gordon. If moreover $W$ is a Coxeter group, they conjectured that these notions coincide with the analogous notions defined using the Hecke algebra by Kazhdan and Lusztig (or Lusztig in the unequal parameters case). In the present paper, we aim to investigate these conjectures whenever $W$ is a dihedral group.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.