Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Action Classification and Highlighting in Videos (1708.09522v1)

Published 31 Aug 2017 in cs.CV

Abstract: Inspired by recent advances in neural machine translation, that jointly align and translate using encoder-decoder networks equipped with attention, we propose an attentionbased LSTM model for human activity recognition. Our model jointly learns to classify actions and highlight frames associated with the action, by attending to salient visual information through a jointly learned soft-attention networks. We explore attention informed by various forms of visual semantic features, including those encoding actions, objects and scenes. We qualitatively show that soft-attention can learn to effectively attend to important objects and scene information correlated with specific human actions. Further, we show that, quantitatively, our attention-based LSTM outperforms the vanilla LSTM and CNN models used by stateof-the-art methods. On a large-scale youtube video dataset, ActivityNet, our model outperforms competing methods in action classification.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Atousa Torabi (6 papers)
  2. Leonid Sigal (102 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.