Preliminary testing derivatives of a linear unified estimator in the logistic regression model
Abstract: Recently, the well known Liu estimator (Liu, 1993) is attracted researcher's attention in regression parameter estimation for an ill conditioned linear model. It is also argued that imposing sub-space hypothesis restriction on parameters improves estimation by shrinking toward non-sample information. Chang (2015) proposed the almost unbiased Liu estimator (AULE) in the binary logistic regression. In this article, some improved unbiased Liu type estimators, namely, restricted AULE, preliminary test AULE, Stein-type shrinkage AULE and its positive part for estimating the regression parameters in the binary logistic regression model are proposed based on the work Chang (2015). The performances of the newly defined estimators are analysed through some numerical results. A real data example is also provided to support the findings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.