Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning a 3D descriptor for cross-source point cloud registration from synthetic data (1708.08997v1)

Published 24 Aug 2017 in cs.CV

Abstract: As the development of 3D sensors, registration of 3D data (e.g. point cloud) coming from different kind of sensor is dispensable and shows great demanding. However, point cloud registration between different sensors is challenging because of the variant of density, missing data, different viewpoint, noise and outliers, and geometric transformation. In this paper, we propose a method to learn a 3D descriptor for finding the correspondent relations between these challenging point clouds. To train the deep learning framework, we use synthetic 3D point cloud as input. Starting from synthetic dataset, we use region-based sampling method to select reasonable, large and diverse training samples from synthetic samples. Then, we use data augmentation to extend our network be robust to rotation transformation. We focus our work on more general cases that point clouds coming from different sensors, named cross-source point cloud. The experiments show that our descriptor is not only able to generalize to new scenes, but also generalize to different sensors. The results demonstrate that the proposed method successfully aligns two 3D cross-source point clouds which outperforms state-of-the-art method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Xiaoshui Huang (55 papers)
Citations (2)