Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the variety of 1-dimensional representations of finite $W$-algebras in low rank

Published 29 Aug 2017 in math.RT and math.RA | (1708.08609v1)

Abstract: Let $\mathfrak g$ be a simple Lie algebra over $\mathbb C$ and let $e \in \mathfrak g$ be nilpotent. We consider the finite $W$-algebra $U(\mathfrak g,e)$ associated to $e$ and the problem of determining the variety $\mathcal E(\mathfrak g,e)$ of 1-dimensional representations of $U(\mathfrak g,e)$. For $\mathfrak g$ of low rank, we report on computer calculations that have been used to determine the structure of $\mathcal E(\mathfrak g,e)$, and the action of the component group $\Gamma_e$ of the centralizer of $e$ on $\mathcal E(\mathfrak g,e)$. As a consequence, we provide two examples where the nilpotent orbit of $e$ is induced, but there is a 1-dimensional $\Gamma_e$-stable $U(\mathfrak g,e)$-module which is not induced via Losev's parabolic induction functor. In turn this gives examples where there is a "non-induced" multiplicity free primitive ideal of $U(\mathfrak g)$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.