Papers
Topics
Authors
Recent
2000 character limit reached

Backward Simulation of Stochastic Process using a Time Reverse Monte Carlo method

Published 27 Aug 2017 in physics.data-an, cond-mat.dis-nn, cond-mat.stat-mech, nlin.CD, and stat.ME | (1708.08045v4)

Abstract: The "backward simulation" of a stochastic process is defined as the stochastic dynamics that trace a time-reversed path from the target region to the initial configuration. If the probabilities calculated by the original simulation are easily restored from those obtained by backward dynamics, we can use it as a computational tool. It is shown that the naive approach to backward simulation does not work as expected. As a remedy, the Time Reverse Monte Carlo method (TRMC) based on the ideas of Sequential Importance Sampling (SIS) and Sequential Monte Carlo (SMC) is proposed and successfully tested with a stochastic typhoon model and the Lorenz 96 model. TRMC with SMC, which contains resampling steps, is shown to be more efficient for simulations with a larger number of time steps. A limitation of TRMC and its relation to the Bayes formula are also discussed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.