Papers
Topics
Authors
Recent
Search
2000 character limit reached

An LSTM-Based Dynamic Customer Model for Fashion Recommendation

Published 24 Aug 2017 in cs.IR and cs.LG | (1708.07347v1)

Abstract: Online fashion sales present a challenging use case for personalized recommendation: Stores offer a huge variety of items in multiple sizes. Small stocks, high return rates, seasonality, and changing trends cause continuous turnover of articles for sale on all time scales. Customers tend to shop rarely, but often buy multiple items at once. We report on backtest experiments with sales data of 100k frequent shoppers at Zalando, Europe's leading online fashion platform. To model changing customer and store environments, our recommendation method employs a pair of neural networks: To overcome the cold start problem, a feedforward network generates article embeddings in "fashion space," which serve as input to a recurrent neural network that predicts a style vector in this space for each client, based on their past purchase sequence. We compare our results with a static collaborative filtering approach, and a popularity ranking baseline.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.