Asymptotic Expansions and Solitons of the Camassa-Holm Nonlinear Schrodinger Equation (1708.06084v1)
Abstract: We study a deformation of the defocusing nonlinear Schr\"odinger (NLS) equation, the defocusing Camassa- Holm NLS, hereafter referred to as CH-NLS equation. We use asymptotic multiscale expansion methods to reduce this model to a Boussinesq-like equation, which is then subsequently approximated by two Korteweg-de Vries (KdV) equations for left- and right-traveling waves. We use the soliton solution of the KdV equation to construct approximate solutions of the CH-NLS system. It is shown that these solutions may have the form of either dark or antidark solitons, namely dips or humps on top of a stable continuous-wave background. We also use numerical simulations to investigate the validity of the asymptotic solutions, study their evolution, and their head-on collisions. It is shown that small-amplitude dark and antidark solitons undergo quasi-elastic collisions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.