Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Entanglement and quantum combinatorial designs (1708.05946v2)

Published 20 Aug 2017 in quant-ph

Abstract: We introduce several classes of quantum combinatorial designs, namely quantum Latin squares, cubes, hypercubes and a notion of orthogonality between them. A further introduced notion, quantum orthogonal arrays, generalizes all previous classes of designs. We show that mutually orthogonal quantum Latin arrangements can be entangled in the same way than quantum states are entangled. Furthermore, we show that such designs naturally define a remarkable class of genuinely multipartite highly entangled states called $k$-uniform, i.e. multipartite pure states such that every reduction to $k$ parties is maximally mixed. We derive infinitely many classes of mutually orthogonal quantum Latin arrangements and quantum orthogonal arrays having an arbitrary large number of columns. The corresponding multipartite $k$-uniform states exhibit a high persistency of entanglement, which makes them ideal candidates to develop multipartite quantum information protocols.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.