Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Salt-n-pepper noise filtering using Cellular Automata (1708.05019v1)

Published 16 Aug 2017 in cs.CV

Abstract: Cellular Automata (CA) have been considered one of the most pronounced parallel computational tools in the recent era of nature and bio-inspired computing. Taking advantage of their local connectivity, the simplicity of their design and their inherent parallelism, CA can be effectively applied to many image processing tasks. In this paper, a CA approach for efficient salt-n-pepper noise filtering in grayscale images is presented. Using a 2D Moore neighborhood, the classified "noisy" cells are corrected by averaging the non-noisy neighboring cells. While keeping the computational burden really low, the proposed approach succeeds in removing high-noise levels from various images and yields promising qualitative and quantitative results, compared to state-of-the-art techniques.

Citations (11)

Summary

We haven't generated a summary for this paper yet.