Papers
Topics
Authors
Recent
Search
2000 character limit reached

Numbers Represented by a Finite Set of Binary Quadratic Forms

Published 16 Aug 2017 in math.NT | (1708.04877v1)

Abstract: Every quadratic form represents 0; therefore, if we take any number of quadratic forms and ask which integers are simultaneously represented by all members of the collection, we are guaranteed a nonempty set. But when is that set more than just the "trivial" 0? We address this question in the case of integral, positive- definite, reduced, binary quadratic forms. For forms of the same discriminant, we can use the structure of the underlying class group. If, however, the forms have different discriminants, we must apply class field theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.