Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acoustic Feature Learning via Deep Variational Canonical Correlation Analysis (1708.04673v2)

Published 11 Aug 2017 in cs.CV

Abstract: We study the problem of acoustic feature learning in the setting where we have access to another (non-acoustic) modality for feature learning but not at test time. We use deep variational canonical correlation analysis (VCCA), a recently proposed deep generative method for multi-view representation learning. We also extend VCCA with improved latent variable priors and with adversarial learning. Compared to other techniques for multi-view feature learning, VCCA's advantages include an intuitive latent variable interpretation and a variational lower bound objective that can be trained end-to-end efficiently. We compare VCCA and its extensions with previous feature learning methods on the University of Wisconsin X-ray Microbeam Database, and show that VCCA-based feature learning improves over previous methods for speaker-independent phonetic recognition.

Citations (19)

Summary

We haven't generated a summary for this paper yet.