Papers
Topics
Authors
Recent
2000 character limit reached

Acoustic Feature Learning via Deep Variational Canonical Correlation Analysis

Published 11 Aug 2017 in cs.CV | (1708.04673v2)

Abstract: We study the problem of acoustic feature learning in the setting where we have access to another (non-acoustic) modality for feature learning but not at test time. We use deep variational canonical correlation analysis (VCCA), a recently proposed deep generative method for multi-view representation learning. We also extend VCCA with improved latent variable priors and with adversarial learning. Compared to other techniques for multi-view feature learning, VCCA's advantages include an intuitive latent variable interpretation and a variational lower bound objective that can be trained end-to-end efficiently. We compare VCCA and its extensions with previous feature learning methods on the University of Wisconsin X-ray Microbeam Database, and show that VCCA-based feature learning improves over previous methods for speaker-independent phonetic recognition.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.