Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximation of Minimal Functions by Extreme Functions (1708.04344v1)

Published 14 Aug 2017 in math.OC, math.FA, and math.NA

Abstract: In a paper, Basu, Hildebrand, and Molinaro established that the set of continuous minimal functions for the 1-dimensional Gomory-Johnson infinite group relaxation possesses a dense subset of extreme functions. The $n$-dimensional version of this result was left as an open question. In the present paper, we settle this query in the affirmative: for any integer $n \geq 1$, every continuous minimal function can be arbitrarily well approximated by an extreme function in the $n$-dimensional Gomory-Johnson model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.