Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast ADMM for sum-of-squares programs using partial orthogonality (1708.04174v2)

Published 14 Aug 2017 in math.OC

Abstract: When sum-of-squares (SOS) programs are recast as semidefinite programs (SDPs) using the standard monomial basis, the constraint matrices in the SDP possess a structural property that we call \emph{partial orthogonality}. In this paper, we leverage partial orthogonality to develop a fast first-order method, based on the alternating direction method of multipliers (ADMM), for the solution of the homogeneous self-dual embedding of SDPs describing SOS programs. Precisely, we show how a "diagonal plus low rank" structure implied by partial orthogonality can be exploited to project efficiently the iterates of a recent ADMM algorithm for generic conic programs onto the set defined by the affine constraints of the SDP. The resulting algorithm, implemented as a new package in the solver CDCS, is tested on a range of large-scale SOS programs arising from constrained polynomial optimization problems and from Lyapunov stability analysis of polynomial dynamical systems. These numerical experiments demonstrate the effectiveness of our approach compared to common state-of-the-art solvers.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube