Papers
Topics
Authors
Recent
Search
2000 character limit reached

Argument Labeling of Explicit Discourse Relations using LSTM Neural Networks

Published 11 Aug 2017 in cs.CL | (1708.03425v2)

Abstract: Argument labeling of explicit discourse relations is a challenging task. The state of the art systems achieve slightly above 55% F-measure but require hand-crafted features. In this paper, we propose a Long Short Term Memory (LSTM) based model for argument labeling. We experimented with multiple configurations of our model. Using the PDTB dataset, our best model achieved an F1 measure of 23.05% without any feature engineering. This is significantly higher than the 20.52% achieved by the state of the art RNN approach, but significantly lower than the feature based state of the art systems. On the other hand, because our approach learns only from the raw dataset, it is more widely applicable to multiple textual genres and languages.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.