Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multimodel Response Assessment for Monthly Rainfall Distribution in Some Selected Indian Cities Using Best Fit Probability as a Tool (1708.03144v3)

Published 10 Aug 2017 in stat.AP and physics.ao-ph

Abstract: We carry out a study of the statistical distribution of rainfall precipitation data for 20 cites in India. We have determined the best-fit probability distribution for these cities from the monthly precipitation data spanning 100 years of observations from 1901 to 2002. To fit the observed data, we considered 10 different distributions. The efficacy of the fits for these distributions was evaluated using four empirical non-parametric goodness-of-fit tests namely Kolmogorov-Smirnov, Anderson-Darling, Chi-Square, Akaike information criterion, and Bayesian Information criterion. Finally, the best-fit distribution using each of these tests were reported, by combining the results from the model comparison tests. We then find that for most of the cities, Generalized Extreme-Value Distribution or Inverse Gaussian Distribution most adequately fits the observed data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.