Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Decoding Stock Market with Quant Alphas (1708.02984v1)

Published 9 Aug 2017 in q-fin.PM, q-fin.MF, and q-fin.RM

Abstract: We give an explicit algorithm and source code for extracting expected returns for stocks from expected returns for alphas. Our algorithm altogether bypasses combining alphas with weights into "alpha combos". Simply put, we have developed a new method for trading alphas which does not involve combining them. This yields substantial cost savings as alpha combos cost hedge funds around 3% of the P&L, while alphas themselves cost around 10%. Also, the extra layer of alpha combos, which our new method avoids, adds noise and suboptimality. We also arrive at our algorithm independently by explicitly constructing alpha risk models based on position data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube