The canonical join complex for biclosed sets
Abstract: The canonical join complex of a semidistributive lattice is a simplicial complex whose faces are canonical join representations of elements of the semidistributive lattice. We give a combinatorial classification of the faces of the canonical join complex of the lattice of biclosed sets of segments supported by a tree, as introduced by the third author and McConville. We also use our classification to describe the elements of the shard intersection order of the lattice of biclosed sets. As a consequence, we prove that this shard intersection order is a lattice.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.